氢能存储技术路线分析
来源: | 购买报告:136-997-996-97微信 | 发布时间: 2024-07-01 | 176 3612次浏览 | 分享到:


车研咨询(www.cheyanzixun.com)发布的氢能与燃料电池系列报告,对全国1000多家氢能与燃料电池产业链的企业、31省市/300个地级市氢能与燃料电池产业政策规划、企业投资布局、氢燃料电池汽车推广、加氢站建设等进行了详细的分析。




链接:《中国氢能市场发展与投资前景预测调研分析报告》




购买报告,联系在线客服或136-997-996-97(微信)

更多相关内容,关注微信公众号





储氢技术按照氢的物理形态可分为气态储氢、液态储氢和固态储氢三种技术路线。

高压气态储氢是氢储存最直接的方式。高压气态储氢是指通过高压将氢气压缩到一个耐高压的容器或地下储气库中,其储氢量与储存压力成正比,目前应用最多的储氢容器是储气罐和车载储氢瓶,压力最高可达到70MPa 级。高端碳纤维技术不够成熟且复合材料成本较高,是目前制约国内高压储氢发展的主要因素,未来高压气态储氢还需向轻量化、高压化、低成本、质量稳定的方向发展,低成本的适用于高压临氢环境的新材料是研发的重点。地下储氢是指利用地下地质构造进行大规模的氢存储,即将氢气注入盐穴、枯竭油气藏或含水层等地下地质构造中储存起来。地下储氢具有储存规模大、储存周期长、储存成本低、安全性高四大优势,与地面储氢相比,地下储存的氢气不与大气中的氧气接触,爆炸危险性更低。

液态储氢包含低温液态储氢和有机液态储氢两种技术路线。低温液态储氢基本原理是将氢气压缩冷却至-253℃使其液化,并储存在低温绝热容器中,液氢密度可达70.78 千克每立方米。氢气液化系统和储氢容器是氢气低温液化储存的关键装置。低温液态储氢具备储量大、纯度高、占地小、充装快等优势,但由于氢气液化温度低,使得液化系统能耗高,且对储氢容器绝热要求高。有机液态储氢是利用氢气与有机介质发生可逆化学反应,实现氢的储存和释放,烯烃、炔烃、芳烃等不饱和液态有机物是目前较为常见的有机液态储氢介质。有机液态储氢技术具备稳定性高、安全性好、储氢密度大、储氢介质可循环使用等优势,但该技术存在脱氢温度高、效率低、能耗大等问题,目前仍处于研发示范阶段。

固态储氢是利用氢元素与载体材料反应生成化学键,将氢分子固定在固体化合物中的一种储氢方式。加氢后的储氢材料能够以固态形式保存氢,从根本上解决了高压氢气泄漏和储氢容器氢脆等安全问题,保证了氢储运的安全性。根据吸附原理的不同,一般将固态储氢材料分为物理吸附储氢材料和化学吸附储氢材料,物理吸附储氢材料包括碳基材料、无机多孔材料和金属有机骨架化合物等,由于大多数物理吸附类材料在较低的温度下才能达到一定的储氢密度,常温常压下吸氢量很低,因此限制了其应用;化学吸附储氢材料主要包括金属氢化物、配位氢化物、化学氢化物等,目前金属氢化物研究最为成熟。目前研究较多的化学吸附储氢材料包括金属氢化物和轻质金属化合物,其中,金属氢化物研究较为成熟。固态储氢的体积储氢密度高、安全性好,是一种有前景的储氢方式,然而,目前固态储氢的缺点在于储氢材料在室温下储氢量过低,且吸附材料的制备昂贵,导致固态储氢商业化程度较低。

图片